


TL;DR: The most important principal 
components provide more complete and 
interpretable explanations than the most 

important neurons.



–Dario Amodei (https://www.darioamodei.com/post/the-urgency-of-interpretability)

“Many of the risks and worries associated with generative AI are 
ultimately consequences of this opacity, and would be much easier 

to address if the models were interpretable.” 

The urgency of interpretability

https://www.darioamodei.com/post/the-urgency-of-interpretability


Completeness and interpretability
• High quality explanations should be 

complete and interpretable [1]


• Completeness = accurately reflect a NN's 
function


• Interpretability = understandable to humans


• Popular NN explanation methods make 
choices that increase interpretability at the 
expense of completeness. 

[1] Leilani H Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th 
International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89, 2018. 

[2] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. CoRR, abs/1312.6034, 2013. 

[3] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T. Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. The (un)reliability of saliency methods, 2017. 
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Explainability philosophy
• Each NN layer outputs a nonlinear transformation of its input


• Goal: Understand each layer’s nonlinear transformation by explaining how 
output differs from input


• Problem: Humans cannot naturally understand NN latent space

Layer lLayer input X Layer output A



Explainability philosophy
• Each NN layer outputs a nonlinear transformation of its input


• Ideal Goal: Understand each layer’s nonlinear transformation by explaining how output 
differs from input


• Problem: Humans cannot naturally understand NN latent space, only input space 


• Refined goal: Understand how NN input  is transformed to produce 

X

X Al

Layer lLayer input Al−1 Layer output Al

NN up to 
layer l

Network input X Layer output Al



Method overview



Sampling a layer’s activations (1/4)

• Construct  by randomly sampling a single  
vector from each of the  ImageNet examples


•  is either n_channels or n_neurons


• Sample pre-nonlinearity

A ∈ ℝn×d ℝd

n

d

NN up to 
layer l

Network input X ∈ ℝlX×wX×dX Layer output Atotal ∈ ℝl×w×d



Identifying basis vectors (2/4)
• Difficulties with choosing a basis


• High-dimensional activations


• Distributed representations: Multiple neurons fire together to 
represent a concept


• Human attention is limited; we can’t look at every basis vector


• Naive/common basis: Neuron basis


• Axis-aligned (e.g. orange arrows)


• Alternative: Principle component basis


• Aligned to directions of largest variance (e.g. red arrows)



Visualizing points along basis vectors (3/4)

• Sample  points along each basis vector 
( )


• For each point , we find  receptive-
field-sized image patch whose activations 
minimize the  distance to 

m
𝒰[min , max]

atarget ∈ ℝd k

ℓ2 atarget



Distance minimizing vs activation maximization

• Activation maximization makes it more difficult to isolate the effect of a 
single basis vector



Demo
• Interactive 

demo: https://
ndey96.github.io
/neuron-
explanations-
sacrifice


• Includes 
AlexNet, 
ResNet-18, 
ResNet-50, ViT-
B/16

https://ndey96.github.io/neuron-explanations-sacrifice
https://ndey96.github.io/neuron-explanations-sacrifice
https://ndey96.github.io/neuron-explanations-sacrifice
https://ndey96.github.io/neuron-explanations-sacrifice
https://ndey96.github.io/neuron-explanations-sacrifice
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Quantifying completeness: Explained variance

• 


• Much of the activation variance is concentrated in the most important PCs (blue line) whereas explained variance is far less concentrated in the neuron 
basis (orange line). 


• For example, to explain 80% of the activation variance for fc1, one could either study the first 42 PCs, or the 2782 highest variance neurons.

Cumulative sum of explained variance ratio of top-k basis vectors =
∑k

i=1 Var(A′￼i)

∑n
j=1 Var(A′￼j)



Quantifying completeness: Activation ablation
• Cumulatively ablate basis vectors and observe how much accuracy degrades. Basis vectors 

more important for a network's function should degrade accuracy rapidly compared to less 
important basis vectors. 


• For most layers in AlexNet, ablating the highest variance PCs (solid blue line) damages accuracy 
more than ablating the highest variance neurons (solid orange line).



Quantifying interpretability: User study (1/3)



Quantifying interpretability: User study (2/3)



Quantifying interpretability: User study (3/3)

• PC visualizations were, on average, 
more interpretable than Neuron 
visualizations for each layer in 
AlexNet with the most pronounced 
differences seen in layers conv2, fc1, 
and fc2.



Discussion
• TL;DR: The most important principal components provide more complete 

and interpretable explanations than the most important neurons.


• Intended impact: Motivate the community to think more carefully about 
the basis try to explain.


• Limitations: PCA offers a linear view of the nonlinear activation manifolds 
in NNs. PCA is far from the ideal decomposition.


• Future work: This motivates nonlinear dimensionality reduction such as 
SAEs which offer a scalable approach!



Extra slides



What is a tuning dimension?
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Why are tuning dimensions useful?

Harris Nover, Charles H. Anderson, and Gregory C. DeAngelis. A logarithmic, scale-invariant representation of speed in macaque middle temporal area accounts for speed discrimination 
performance. Journal of Neuroscience, 25(43):10049–10060, 2005. ISSN 0270-6474. doi: 10.1523/JNEUROSCI.1661-05.2005. URL https://www.jneurosci.org/content/25/ 43/10049.
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Manually identifying tuning dimensions in deep 
networks

Tuning dimension: curve orientation
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Nick Cammarata, Gabriel Goh, Shan Carter, Ludwig Schubert, Michael Petrov, and Chris Olah. Curve detectors. Distill, 2020. doi: 10.23915/distill.00024.003. https://distill.pub/2020/circuits/
curve-detectors.



Neural Manifolds for the Control of Movement  
(Neuron 2017)

• using dimensionality reduction like 
PCA or factor analysis to find low-
dimensional latent space for a neuron 
population


• interpreting each PC as a “neural 
mode” rather than a tuning dimension


• neural manifolds embody patterns of 
correlated activity


• evidence that network connectivity 
underlies the interactions among 
neurons captured by dimensionality 
reduction methods and the resulting 
neural modes.

https://www.cell.com/neuron/pdf/S0896-6273(17)30463-4.pdf

https://www.cell.com/neuron/pdf/S0896-6273(17)30463-4.pdf


Neural Trajectories in the Supplementary Motor Area and Motor Cortex 
Exhibit Distinct Geometries, Compatible with Different Classes of 

Computation - Neuron

http://www.columbia.edu/cu/neurotheory/Larry/RussoNeuron20.pdf

primary motor cortex (M1)

supplementary motor area (SMA)

Monkey 1 Monkey 2



Neural tuning and representational geometry  (Apr 
20, 2021)

https://arxiv.org/pdf/2104.09743.pdf

https://arxiv.org/pdf/2104.09743.pdf

