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* Theoretical paper but I will be talking at a high level about the key idea proposed and its implications
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● The reasoning process has a certain algorithmic structure

● Whether a neural net architecture is able to learn to perform a reasoning task depends on how 
much its structure aligns with this algorithmic structure

● Authors present a theoretical framework for measuring this in terms of sample efficiency called 
ALGORITHMIC ALIGNMENT

● Demonstrate empirically the usefulness of this measure: 
Reasoning tasks: Reasoning problems like Visual question answering, Shortest path etc can be 
solved using algorithmic solutions. Use 3 increasingly complex algorithmic solution 
approaches: summary statistics, relational argmax, dynamic programming
NN architectures: MLP, Deep Sets, GNN

Key takeaways
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Reasoning

7Johnson, Justin, et al. "Clevr: A diagnostic dataset for compositional language and elementary visual reasoning." 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.
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● Universe S = set of objects to reason about

● Each object s ∈ S is represented by a feature vector X = [h1, h2, …, hk]

● Vector X can be state descriptions, features learned from data (images, questions etc.)

● Information about a specific ‘question’ can be encoded in X

● Given a set of universes {S1, S2, …, Sm} and answer labels y = {y1, y2, …, ym}

learn a function which can answer questions about unseen universe y = g(S)

Reasoning: Problem Formalization
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● VQA

○ Universe: Images/Questions

○ Objects: Objects in the image/question

○ Answers: Answer

● Shortest Path

○ Universe: Graph

○ Objects: Nodes/Edges

○ Answers: Shortest path

Reasoning: Problem Formalization
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Reasoning: summary statistics

Max/Min/Sum etc of (features of) all objects
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Reasoning: relational argmax
Compare pairwise relations between 
objects and answer a question about 
those pairwise results
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Reasoning: dynamic programming
Several relational reasoning tasks can 
be solved using a dynamic 
programming algorithm

Answer[k][i] = DP-Update({Answer[k − 1][j]} , j = 1...n)

e.g. Shortest path can be solved using Bellman Ford
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Reasoning: dynamic programming
VQA: “Starting at object X, if each time we jump to the closest object, 
which object is K jumps away?”

closest[1][i] = arg minj d(i, j), closest[k][i] = closest[k − 1][closest[1][i]]

Intuitive physics: Authors also show how moving objects and force 
interactions, which are another popular area of AI reasoning research, 
can be modelled as dynamic programming updates (refer paper)
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Network Structure: MLP

15https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network

● No inherent relational structure

● Works well for single object 
universes (image classification) 

● Has a hard time generalizing to 
multi-object universes if trained on 
concatenated object 
representations 



Network Structure: Deep Sets

16https://www.researchgate.net/figure/Architecture-of-DeepSets-Equivariant_fig5_315383633

● y = MLP2 [∑s∈S MLP1 (Xs)]

● Can (in principle) learn permutation 
invariant functions of objects

● Think summary statistics: MLP1 can 
learn features of objects and MLP2 
can then learn summary statistics



Network Structure: GNNs

17https://towardsdatascience.com/https-medium-com-aishwaryajadhav-applications-of-graph-neural-networks-1420576be574

● Message passing scheme where at iteration 
k the representation h(k)

s is recursively 
updated by aggregating representations of 
neighbouring states

● h(k)
s = ∑t∈S MLP(k) 

1  [h(k−1)
s , h

(k−1)
t]

hS = MLP2(∑s∈S h(k−1)
s )

hS=output, K=#layers, hs
(0) = Xs

● Permutation invariant (like deep sets). 
Unlike deep sets which focus on individual 
objects, GNNs can also focus on pairwise 
relations (think relational argmax)
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Network structure 
● Empirically, GNNs are able to learn ‘better’ than Deep Sets when 

relations of objects are involved

● In theory, all three networks should be able to learn any permutation 
invariant continuous function over sets of object representations with 
bounded cardinality (for proofs see paper) 

● Thus, the difference in accuracy must be arising from different 
generalization ability
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Network structure and algorithms 
● Intuitively, a network may generalize better if its able to represent a 

function more ‘easily’

● e.g. CNNs perform great on images because convolution filters are 
translation invariant for objects in the images

● The inductive bias of ‘the neural network’s architecture induces a 
computational structure on the function it computes’



21

Network structure and algorithms 

● e.g. Bellman-Ford algorithm outlines the correct reasoning process to solve a shortest 
path problem. 

● GNN can simulate Bellman Ford if it’s able to learn the relaxation step in the last line 
(sum->min over neighboring nodes v) via its aggregation operation

● However, an MLP or Deep Set would have to learn the structure of the entire for loop.



PAC learning framework
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Algorithmic Alignment
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Formally, a neural network aligns with an algorithm if 

1. It can simulate it via a limited number of modules  
2. Each module is simple i.e. has low sample complexity

’Good algorithmic alignment, i.e., small M, implies that all algorithm steps fi to simulate the algorithm g 
are easy to learn.’
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Calculating algorithmic alignment
Paper does not derive any end-to-end learning results. A derivation for sequential 
training of modules with auxiliary labels for MLPs is provided. 

➢ Functions that are “simple” when expressed as a polynomial (e.g. via a Taylor 
expansion) can be sample-efficiently learned by an MLP. Algorithm steps which 
perform computations over many objects (e.g. for loops) lead to higher sample 
complexity for MLPs

In same simplified setting, paper proves that sample complexity bound increases 
with increase in algorithmic alignment value M

(*For proofs and derivations please refer to original paper)
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Theoretical result
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Theoretically, for a summary statistic task (sum of pairwise squares), the sample complexity bound 
for MLP is O(objects^2) times larger than for GNN



Empirical Settings
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● Summary Statistics

○ Maximum value difference : Each object is a treasure X = [h1, h2, h3] with location h1, value h2 and 
color h3. Models have to predict difference in value between most and least valuable treasure

● Relational argmax

○ Furthest pair: same object setting as before. Train models to find colors of objects with the largest 
distance (encoded as an integer category representing pair of colors)

● Dynamic programming

○ Shortest Path: solved using Bellman-Ford previously discussed

● NP-Hard problems 

○ Subset sum: Given a set of numbers, does there exist a subset of numbers which sums to zero?



Empirical Results: Sample efficiency (DP task)
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Empirical Results: Test Accuracy
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Thank You
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