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Background: Ordinary Differential Equations (ODES)

- Model the instantaneous change of a state.
dz(t)
dt

- Solving an initial value problem (I\VP) corresponds to integration.

= f(z(t),t) (explicit form)

t
z(t) = z(tg) + | f(z(t),t)dt  (solution is a trajectory)
to

- Euler method approximates with small steps:

2(t+h) =z2(t)+ hf(z(t),1)



Residual Networks interpreted as an ODE Solver

- Hidden units look like: zi+1 = Fi(z1) = 21 + fi(21)
- Final output is the composition: zy, = Fr,_1 0 Fr_o---0 Fy(20)

Haber & Ruthotto (2017). E (2017).



Residual Networks interpreted as an ODE Solver

- Hidden units look like: zj4+1 = Fi(21) = 21 + fi(21)
- Final output is the composition: zy, = Fr,_1 0 Fr_o---0 Fy(20)

A Az A
2 4
- This can be interpreted as an Euler A
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Haber & Ruthotto (2017). E (2017).



Deep Learning as Discretized Differential Equations

Many deep learning networks can be interpreted as ODE solvers.

Network Fixed-step Numerical Scheme
ResNet, RevNet, ResNeXt, etc. Forward Euler

PolyNet Approximation to Backward Euler
FractalNet Runge-Kutta

DenseNet Runge-Kutta



Deep Learning as Discretized Differential Equations

Many deep learning networks can be interpreted as ODE solvers.

Network Fixed-step Numerical Scheme
ResNet, RevNet, ResNeXt, etc. Forward Euler LU et al' (201 7)
Chang et al. (2018)
PolyNet Approximation to Backward Euler
Zhu et al. (2018)
FractalNet Runge-Kutta
DenseNet Runge-Kutta

But:
(1) What is the underlying dynamics?
(2) Adaptive-step size solvers provide better error handling.



“Neural” Ordinary Differential Equations

Instead of y = F(x),
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“Neural” Ordinary Differential Equations

Instead of y = F(x), solve y = z(T) 5R€Sldual Network ODE Network
given the initial condition z(0) = x. ‘
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“Neural” Ordinary Differential Equations

Instead of y = F(x), solve y = z(T) 5R€Sldual Network
given the initial condition z(0) = x.

ODE Network

4 1L
Parameterize %2(t)

Solve the dynamic using any

black-box ODE solver. 1
- Adaptive step size.

Error estimate.
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Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

L(z(T)) =L (z(to) + ' f(z(t),t, 9)dt> = L (ODESolve(z(to), to, T, 0))

to
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Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

to

L(z(T)) = L (z(to) L F2(0), 1, e)dt) — L (ODESolve(z(to), to, T, 0))

Naive approach: Know the solver. Backprop through the solver.
- Memory-intensive.
- Family of “implicit” solvers perform inner optimization.



Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

T

L(z(T)) =L (z(to) -+ f(z(t),t, 9)dt> = L (ODESolve(z(to), to, T, 8))
to

Naive approach: Know the solver. Backprop through the solver.

- Memory-intensive.
- Family of “implicit” solvers perform inner optimization.

Our approach: Adjoint sensitivity analysis. (Reverse-mode Autodiff.)
- Pontryagin (1962).
+ Automatic differentiation.
+ O(1) memory in backward pass.



Continuous-time Backpropagation

- oL
Residual network. a::= %

Forward: zian = 2zt + hf(zt)

Backward: a; = aip + hagin Of (2)
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Adjoint method.

Define: a(t) :=
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Continuous-time Backpropagation

- oL
Residual network. a::= %

Forward: zian = 2zt + hf(zt)

Backward: a; = aiyn + haitn 8];(;0
t
: df(2(1),0)
Params: —— — ;
o0 hai4p, 90

Adjoint method.

t+1
Forward: z(t+1) = z(t) +
t

Define: a(t) :

0L
- 0z(t)

f(z(t)) dt



Continuous-time Backpropagation

Residual network. a ==§—ft Adjoint method.  Define: a(t) := aié)

t+1

Forward:  ziyn = 2ze + hf(2) Forward: z(t+1)=z(t) + f(z(t)) dt
t
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Continuous-time Backpropagation

Residual network. a ==§—i Adjoint method.  Define: a(t) := aié)

t+1

Forward:  ziyn = 2ze + hf(2) Forward: z(t+1)=z(t) + f(z(t)) dt
t

Of(z)

b0 (1)
9s, dt

Backward: a(t) = a(t+1) + /t—l—l a(t) 92(t)
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Backward: a; = atrp + haian
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A Differentiable Primitive for AutoDiff
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A Differentiable Primitive for AutoDiff

Forward:
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Continuous-time RNNs for Time Series Modeling

- We often want arbitrary measurement times, ie. irreqular time intervals.
- Can do VAE-style inference with a latent ODE.
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ODEs vs Recurrent Neural Networks (RNNs)

- RNNs learn very
stiff dynamics,
have exploding
gradients.

- Whereas ODEs
are guaranteed
to be smooth.

me  Ground Truth
® Observation

= Prediction

== Extrapolation

(b) Latent Neural Ordinary Differential Equation



