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Background: Ordinary Differential Equations (ODEs)

- Model the instantaneous change of a state.

(explicit form)

- Solving an initial value problem (IVP) corresponds to integration.

(solution is a trajectory)

- Euler method approximates with small steps:



Residual Networks interpreted as an ODE Solver
- Hidden units look like:

- Final output is the composition:
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- Final output is the composition:

- This can be interpreted as an Euler 
discretization of an ODE.

Haber & Ruthotto (2017). E (2017). 

- In the limit of smaller steps:
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But:
(1) What is the underlying dynamics?
(2) Adaptive-step size solvers provide better error handling.
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Parameterize

“Neural” Ordinary Differential Equations

Solve the dynamic using any 
black-box ODE solver.

- Adaptive step size.
- Error estimate.
- O(1) memory learning.

Instead of y = F(x), solve y = z(T) 
given the initial condition z(0) = x.
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Backprop without knowledge of the ODE Solver
Ultimately want to optimize some loss

Naive approach: Know the solver. Backprop through the solver.
- Memory-intensive.
- Family of “implicit” solvers perform inner optimization.

Our approach: Adjoint sensitivity analysis. (Reverse-mode Autodiff.)
- Pontryagin (1962).

+ Automatic differentiation.
+ O(1) memory in backward pass.
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A Differentiable Primitive for AutoDiff
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A Differentiable Primitive for AutoDiff

Forward:

Backward:



Continuous-time RNNs for Time Series Modeling
- We often want arbitrary measurement times, ie. irregular time intervals.
- Can do VAE-style inference with a latent ODE.



ODEs vs Recurrent Neural Networks (RNNs)

- RNNs learn very 
stiff dynamics, 
have exploding 
gradients. 

-

- Whereas ODEs 
are guaranteed 
to be smooth.


