Neural Ordinary Differential Equations

Mohd Adnan MASc Candidate https://adnan1306.github.io/

Background: Ordinary Differential Equations (ODEs)

- Model the instantaneous change of a state.

$$\frac{dz(t)}{dt} = f(z(t), t) \quad \text{(explicit form)}$$

- Solving an initial value problem (IVP) corresponds to integration.

$$z(t) = z(t_0) + \int_{t_0}^t f(z(t), t)dt \qquad \text{(solut)}$$

(solution is a trajectory)

- Euler method approximates with small steps:

$$z(t+h) = z(t) + hf(z(t), t)$$

Residual Networks interpreted as an ODE Solver

- Hidden units look like: $z_{l+1} = F_l(z_l) = z_l + f_l(z_l)$
- Final output is the composition: $z_L = F_{L-1} \circ F_{L-2} \cdots \circ F_0(z_0)$

Haber & Ruthotto (2017). E (2017).

Residual Networks interpreted as an ODE Solver

- Hidden units look like: $z_{l+1} = F_l(z_l) = z_l + f_l(z_l)$

- Final output is the composition: $z_L = F_{L-1} \circ F_{L-2} \cdots \circ F_0(z_0)$

- This can be interpreted as an **Euler** discretization of an ODE.

- In the limit of smaller steps:
$$rac{dz(t)}{dt} = \lim_{h o 0} rac{z_{t+h} - z_t}{h} = f(z_t)$$

Haber & Ruthotto (2017). E (2017).

Deep Learning as Discretized Differential Equations

Many deep learning networks can be interpreted as ODE solvers.

Network	Fixed-step Numerical Scheme
ResNet, RevNet, ResNeXt, etc.	Forward Euler
PolyNet	Approximation to Backward Euler
FractalNet	Runge-Kutta
DenseNet	Runge-Kutta

Lu et al. (2017) Chang et al. (2018) Zhu et al. (2018)

Deep Learning as Discretized Differential Equations

Many deep learning networks can be interpreted as ODE solvers.

Network	Fixed-step Numerical Scheme
ResNet, RevNet, ResNeXt, etc.	Forward Euler
PolyNet	Approximation to Backward Euler
FractalNet	Runge-Kutta
DenseNet	Runge-Kutta

Lu et al. (2017) Chang et al. (2018) Zhu et al. (2018)

But:

- (1) What is the underlying dynamics?
- (2) Adaptive-step size solvers provide better error handling.

"Neural" Ordinary Differential Equations

Instead of y = F(x),

"Neural" Ordinary Differential Equations

Instead of y = F(x), solve y = z(T)given the initial condition z(0) = x.

Parameterize

$$\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), \theta(t))$$

"Neural" Ordinary Differential Equations

Instead of y = F(x), solve y = z(T)given the initial condition z(0) = x.

Parameterize
$$\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), \theta(t))$$

Solve the dynamic using **any black-box ODE solver**.

- Adaptive step size.
- Error estimate.
- O(1) memory learning.

Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

?

$$L(z(T)) = L\left(z(t_0) + \int_{t_0}^T f(z(t), t, \theta) dt\right) = L\left(\text{ODESolve}(z(t_0), t_0, T, \theta)\right)$$

$$\partial L$$

$$\frac{\partial L}{\partial \theta} =$$

Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

$$L(z(T)) = L\left(z(t_0) + \int_{t_0}^T f(z(t), t, \theta)dt\right) = L\left(\text{ODESolve}(z(t_0), t_0, T, \theta)\right)$$

Naive approach: Know the solver. Backprop through the solver.

- Memory-intensive.
- Family of "implicit" solvers perform inner optimization.

Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

$$L(z(T)) = L\left(z(t_0) + \int_{t_0}^T f(z(t), t, \theta)dt\right) = L\left(\text{ODESolve}(z(t_0), t_0, T, \theta)\right)$$

Naive approach: Know the solver. Backprop through the solver.

- Memory-intensive.
- Family of "implicit" solvers perform inner optimization.

Our approach: Adjoint sensitivity analysis. (Reverse-mode Autodiff.)

- Pontryagin (1962).
 - + Automatic differentiation.
 - + O(1) memory in backward pass.

<u>Residual network.</u> $a_t := \frac{\partial L}{\partial z_t}$ <u>Adjoint method.</u> Define: $a(t) := \frac{\partial L}{\partial z(t)}$ Forward: $z_{t+h} = z_t + hf(z_t)$ Backward: $a_t = a_{t+h} + ha_{t+h} \frac{\partial f(z_t)}{\partial z_t}$ Params: $\frac{\partial L}{\partial \theta} = ha_{t+h} \frac{\partial f(z(t), \theta)}{\partial \theta}$

Backward: $a_t = a_{t+h} + ha_{t+h} \frac{\partial f(z_t)}{\partial z_t}$ Params: $\frac{\partial L}{\partial \theta} = ha_{t+h} \frac{\partial f(z(t), \theta)}{\partial \theta}$

Residual network. $a_t := \frac{\partial L}{\partial z_t}$ Adjoint method.Define: $a(t) := \frac{\partial L}{\partial z(t)}$ Forward: $z_{t+h} = z_t + hf(z_t)$ Forward: $z(t+1) = z(t) + \int_t^{t+1} f(z(t)) dt$

<u>Residual network.</u> $a_t := \frac{\partial L}{\partial z_t}$ Forward: $z_{t+h} = z_t + hf(z_t)$ Backward: $a_t = a_{t+h} + ha_{t+h} \frac{\partial f(z_t)}{\partial z_t}$ E Params: $\frac{\partial L}{\partial \theta} = ha_{t+h} \frac{\partial f(z(t), \theta)}{\partial \theta}$

Adjoint method.Define:
$$a(t) := \frac{\partial L}{\partial z(t)}$$
Forward: $z(t+1) = z(t) + \int_t^{t+1} f(z(t)) dt$ Backward: $a(t) = a(t+1) + \int_{t+1}^t a(t) \frac{\partial f(z(t))}{\partial z(t)} dt$ Adjoint StateAdjoint DiffEq

<u>Residual network.</u> $a_t := \frac{\partial L}{\partial z_t}$ <u>Adjoint method.</u> Define: $a(t) := \frac{\partial L}{\partial z(t)}$ Forward: $z_{t+h} = z_t + hf(z_t)$ Forward: $z(t+1) = z(t) + \int_{t}^{t+1} f(z(t)) dt$ Backward: $a_t = a_{t+h} + ha_{t+h} \frac{\partial f(z_t)}{\partial z_t}$ Backward: $a(t) = a(t+1) + \int_{t+1}^t a(t) \frac{\partial f(z(t))}{\partial z(t)} dt$ Adjoint State Adjoint DiffEq Params: $\frac{\partial L}{\partial \theta} = ha_{t+h} \frac{\partial f(z(t), \theta)}{\partial \theta}$ Params: $\frac{\partial L}{\partial \theta} = \int_{t}^{t+1} a(t) \frac{\partial f(z(t), \theta)}{\partial \theta} dt$

A Differentiable Primitive for AutoDiff

A Differentiable Primitive for AutoDiff

Continuous-time RNNs for Time Series Modeling

- We often want arbitrary measurement times, ie. irregular time intervals.
- Can do VAE-style inference with a latent ODE.

ODEs vs Recurrent Neural Networks (RNNs)

- RNNs learn very stiff dynamics, have exploding gradients.
- Whereas ODEs are guaranteed to be smooth.

(b) Latent Neural Ordinary Differential Equation