
Mohd Adnan
MASc Candidate
https://adnan1306.github.io/



Background: Ordinary Differential Equations (ODEs)

- Model the instantaneous change of a state.

(explicit form)

- Solving an initial value problem (IVP) corresponds to integration.

(solution is a trajectory)

- Euler method approximates with small steps:



Residual Networks interpreted as an ODE Solver
- Hidden units look like:

- Final output is the composition:

Haber & Ruthotto (2017). E (2017). 



Residual Networks interpreted as an ODE Solver
- Hidden units look like:

- Final output is the composition:

- This can be interpreted as an Euler 
discretization of an ODE.

Haber & Ruthotto (2017). E (2017). 

- In the limit of smaller steps:



Deep Learning as Discretized Differential Equations
Many deep learning networks can be interpreted as ODE solvers.

Network Fixed-step Numerical Scheme

ResNet, RevNet, ResNeXt, etc. Forward Euler

PolyNet Approximation to Backward Euler

FractalNet Runge-Kutta

DenseNet Runge-Kutta

Lu et al. (2017) 
Chang et al. (2018)
Zhu et al. (2018)



Deep Learning as Discretized Differential Equations
Many deep learning networks can be interpreted as ODE solvers.

Network Fixed-step Numerical Scheme

ResNet, RevNet, ResNeXt, etc. Forward Euler

PolyNet Approximation to Backward Euler

FractalNet Runge-Kutta

DenseNet Runge-Kutta

Lu et al. (2017) 
Chang et al. (2018)
Zhu et al. (2018)

But:
(1) What is the underlying dynamics?
(2) Adaptive-step size solvers provide better error handling.



“Neural” Ordinary Differential Equations

Instead of y = F(x),



Parameterize

“Neural” Ordinary Differential Equations

Instead of y = F(x), solve y = z(T) 
given the initial condition z(0) = x.



Parameterize

“Neural” Ordinary Differential Equations

Solve the dynamic using any 
black-box ODE solver.

- Adaptive step size.
- Error estimate.
- O(1) memory learning.

Instead of y = F(x), solve y = z(T) 
given the initial condition z(0) = x.



Backprop without knowledge of the ODE Solver
Ultimately want to optimize some loss



Backprop without knowledge of the ODE Solver
Ultimately want to optimize some loss

Naive approach: Know the solver. Backprop through the solver.
- Memory-intensive.
- Family of “implicit” solvers perform inner optimization.



Backprop without knowledge of the ODE Solver
Ultimately want to optimize some loss

Naive approach: Know the solver. Backprop through the solver.
- Memory-intensive.
- Family of “implicit” solvers perform inner optimization.

Our approach: Adjoint sensitivity analysis. (Reverse-mode Autodiff.)
- Pontryagin (1962).

+ Automatic differentiation.
+ O(1) memory in backward pass.



Continuous-time Backpropagation

Residual network.

Forward:

Backward:

Params: 

Define:Adjoint method.



Continuous-time Backpropagation

Residual network.

Forward:

Backward:

Params: 

Adjoint method.

Forward:

Define:



Continuous-time Backpropagation

Residual network.

Forward:

Backward:

Params: 

Adjoint method.

Forward:

Backward:

Adjoint DiffEqAdjoint State

Define:



Continuous-time Backpropagation

Residual network.

Forward:

Backward:

Params: 

Adjoint method.

Forward:

Backward:

Params:

Adjoint DiffEqAdjoint State

Define:



A Differentiable Primitive for AutoDiff

Forward:

Backward:



A Differentiable Primitive for AutoDiff

Forward:

Backward:



Continuous-time RNNs for Time Series Modeling
- We often want arbitrary measurement times, ie. irregular time intervals.
- Can do VAE-style inference with a latent ODE.



ODEs vs Recurrent Neural Networks (RNNs)

- RNNs learn very 
stiff dynamics, 
have exploding 
gradients. 

-

- Whereas ODEs 
are guaranteed 
to be smooth.


