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• NEAT: NeuroEvolution of Augmented Topologies (2002) 

• Typically a NN’s structure is based on empirical evidence 

• But is “it” the best structure to be used? 

• Search space is too large 

• Unnecessary complexity 

• Instead of fixed structure of the network, why not evolve it? 

• An biological evolutionary approach to Neural Networks 

• Network evolves node by node - connection by connection 

• Evolutionary algorithms always heavily mirror biology 

• Key evolutionary processes: Selection, Mutation, Crossover  
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• Genotype: Genetic representation of the creature 
• Example: The genetic chart of an individual (Bb, BB, bb) 

• Phenotype: Physical representation of the creature 
• Example: The colour of the eye (Brown, Blue) 

• How do we wish to represent individuals genetically? 
• Encode the individuals in “Direct” or “Indirect” categories 
• Direct encoding: Explicitly specify everything  

• Ex: For a NN, each gene is linked to some node etc. 
• Direct connection in between genotype and phenotype 

• Indirect encoding: Rules or parameters to create individuals 
• Encoding are much more compact 
• Can result in a heavy bias within the search space
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• Can either mutate existing connections  
• Change the gene’s weight  
• Enable/Disable  the gene 

• Or can add new structure to the network 
• A new connection is always randomly assigned a weight 
• A new node is always placed between two connected nodes 

• The previous connection is disabled (still in genome) 
• Previous start is node linked to the new node 

• Weight is set to be that of the old connection 
• New node is linked to the previous end node 

• Weight is set to 1 
• Helps mitigate issues with new structural additions



M U TAT I O N  ( C O N T. )



B I O L O G Y:  C R O S S O V E R  

• Blindly crossing over the genomes of two NNs could result in 
horribly mutated and non-functional NNs



B I O L O G Y:  C R O S S O V E R  

• Blindly crossing over the genomes of two NNs could result in 
horribly mutated and non-functional NNs



C R O S S O V E R  ( C O N T. )

• Genomes can be of different sizes (hence, incompatible)



C R O S S O V E R  ( C O N T. )

• Genomes can be of different sizes (hence, incompatible) 
• Biology takes care of it through the idea of Homology



C R O S S O V E R  ( C O N T. )

• Genomes can be of different sizes (hence, incompatible) 
• Biology takes care of it through the idea of Homology 
• Homology: Alignment of chromosomes based on matching 

genes for a specific trait



C R O S S O V E R  ( C O N T. )

• Genomes can be of different sizes (hence, incompatible) 
• Biology takes care of it through the idea of Homology 
• Homology: Alignment of chromosomes based on matching 

genes for a specific trait 
• NEAT implements homology through the usage of historical 

markings



C R O S S O V E R  ( C O N T. )

• Genomes can be of different sizes (hence, incompatible) 
• Biology takes care of it through the idea of Homology 
• Homology: Alignment of chromosomes based on matching 

genes for a specific trait 
• NEAT implements homology through the usage of historical 

markings 
• Marks new evolutions with a historical number during 

crossovers



C R O S S O V E R  ( C O N T. )

• Genomes can be of different sizes (hence, incompatible) 
• Biology takes care of it through the idea of Homology 
• Homology: Alignment of chromosomes based on matching 

genes for a specific trait 
• NEAT implements homology through the usage of historical 

markings 
• Marks new evolutions with a historical number during 

crossovers 
• Each gene can be aligned and potentially crossed-over



C R O S S O V E R  ( C O N T. )

• Genomes can be of different sizes (hence, incompatible) 
• Biology takes care of it through the idea of Homology 
• Homology: Alignment of chromosomes based on matching 

genes for a specific trait 
• NEAT implements homology through the usage of historical 

markings 
• Marks new evolutions with a historical number during 

crossovers 
• Each gene can be aligned and potentially crossed-over 
• Each time a new node/connection occurs -> historical 

marking assigned
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•                                                 



B I O L O G Y:  S P E C I AT I O N

• NEAT suggests that most new evolutions are not good ones



B I O L O G Y:  S P E C I AT I O N

• NEAT suggests that most new evolutions are not good ones 
• Adding node/connection before optimization of weights 

leads to lower performing individuals



B I O L O G Y:  S P E C I AT I O N

• NEAT suggests that most new evolutions are not good ones 
• Adding node/connection before optimization of weights 

leads to lower performing individuals  
• This puts new structures at a disadvantage



B I O L O G Y:  S P E C I AT I O N

• NEAT suggests that most new evolutions are not good ones 
• Adding node/connection before optimization of weights 

leads to lower performing individuals  
• This puts new structures at a disadvantage 
• Need to protect new structures and allow them to optimize



B I O L O G Y:  S P E C I AT I O N

• NEAT suggests that most new evolutions are not good ones 
• Adding node/connection before optimization of weights 

leads to lower performing individuals  
• This puts new structures at a disadvantage 
• Need to protect new structures and allow them to optimize 
• How? => SPECIATION!



B I O L O G Y:  S P E C I AT I O N

• NEAT suggests that most new evolutions are not good ones 
• Adding node/connection before optimization of weights 

leads to lower performing individuals  
• This puts new structures at a disadvantage 
• Need to protect new structures and allow them to optimize 
• How? => SPECIATION! 
• Split the population into species based on similarity of 

topology and connections



B I O L O G Y:  S P E C I AT I O N

• NEAT suggests that most new evolutions are not good ones 
• Adding node/connection before optimization of weights 

leads to lower performing individuals  
• This puts new structures at a disadvantage 
• Need to protect new structures and allow them to optimize 
• How? => SPECIATION! 
• Split the population into species based on similarity of 

topology and connections 
• Intra-species competition between the individuals



B I O L O G Y:  S P E C I AT I O N

• NEAT suggests that most new evolutions are not good ones 
• Adding node/connection before optimization of weights 

leads to lower performing individuals  
• This puts new structures at a disadvantage 
• Need to protect new structures and allow them to optimize 
• How? => SPECIATION! 
• Split the population into species based on similarity of 

topology and connections 
• Intra-species competition between the individuals  
• Allows creation, exploration & optimization of new structures



B I O L O G Y:  S P E C I AT I O N

• NEAT suggests that most new evolutions are not good ones 
• Adding node/connection before optimization of weights 

leads to lower performing individuals  
• This puts new structures at a disadvantage 
• Need to protect new structures and allow them to optimize 
• How? => SPECIATION! 
• Split the population into species based on similarity of 

topology and connections 
• Intra-species competition between the individuals  
• Allows creation, exploration & optimization of new structures 
• Explicit Fitness Sharing: Individuals share how well they are 

doing across species 
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• Goal: 
• Did not want to first find good networks and then prune 
• Start with minimal amount of nodes and connections 
• Evolve complexity iff it is found necessary 

• Algorithm starts with all networks having no hidden 
nodes 

• Each individual is mapping of input nodes to output 
node 

• Success: 
• Evolved the XOR function 
• Pole balancing task 
• And popular games as well!



T H A N K S !  

( R E F E R E N C E S :  H T T P S : / / T O WA R D S D ATA S C I E N C E . C O M / N E AT- A N - AW E S O M E - A P P R O A C H - T O - N E U R O E V O L U T I O N - 3 E C A 5 C C 7 9 3 0 F )  
( T H E  S E M I N A L  PA P E R :  H T T P : / / N N . C S . U T E X A S . E D U / D O W N L O A D S / PA P E R S / S TA N L E Y. E C 0 2 . P D F )  

https://towardsdatascience.com/neat-an-awesome-approach-to-neuroevolution-3eca5cc7930f
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

