NEURO EVOLUTION OF AUGMENTED TOPOLOGIES

• NEAT: NeuroEvolution of Augmented Topologies (2002)

- NEAT: NeuroEvolution of Augmented Topologies (2002)
- Typically a NN's structure is based on empirical evidence

- NEAT: NeuroEvolution of Augmented Topologies (2002)
- Typically a NN's structure is based on empirical evidence
- But is "it" the best structure to be used?

- NEAT: NeuroEvolution of Augmented Topologies (2002)
- Typically a NN's structure is based on empirical evidence
- But is "it" the best structure to be used?
 - Search space is too large

- NEAT: NeuroEvolution of Augmented Topologies (2002)
- Typically a NN's structure is based on empirical evidence
- But is "it" the best structure to be used?
 - Search space is too large
 - Unnecessary complexity

- NEAT: NeuroEvolution of Augmented Topologies (2002)
- Typically a NN's structure is based on empirical evidence
- But is "it" the best structure to be used?
 - Search space is too large
 - Unnecessary complexity
- Instead of fixed structure of the network, why not evolve it?

- NEAT: NeuroEvolution of Augmented Topologies (2002)
- Typically a NN's structure is based on empirical evidence
- But is "it" the best structure to be used?
 - Search space is too large
 - Unnecessary complexity
- Instead of fixed structure of the network, why not evolve it?
- An biological evolutionary approach to Neural Networks

- NEAT: NeuroEvolution of Augmented Topologies (2002)
- Typically a NN's structure is based on empirical evidence
- But is "it" the best structure to be used?
 - Search space is too large
 - Unnecessary complexity
- Instead of fixed structure of the network, why not evolve it?
- An biological evolutionary approach to Neural Networks
- Network evolves node by node connection by connection

- NEAT: NeuroEvolution of Augmented Topologies (2002)
- Typically a NN's structure is based on empirical evidence
- But is "it" the best structure to be used?
 - Search space is too large
 - Unnecessary complexity
- Instead of fixed structure of the network, why not evolve it?
- An biological evolutionary approach to Neural Networks
- Network evolves node by node connection by connection
- Evolutionary algorithms always heavily mirror biology

- NEAT: NeuroEvolution of Augmented Topologies (2002)
- Typically a NN's structure is based on empirical evidence
- But is "it" the best structure to be used?
 - Search space is too large
 - Unnecessary complexity
- Instead of fixed structure of the network, why not evolve it?
- An biological evolutionary approach to Neural Networks
- Network evolves node by node connection by connection
- Evolutionary algorithms always heavily mirror biology
- Key evolutionary processes: Selection, Mutation, Crossover

• Genotype: Genetic representation of the creature

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)
- Phenotype: Physical representation of the creature

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)
- Phenotype: Physical representation of the creature
 - Example: The colour of the eye (Brown, Blue)

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)
- Phenotype: Physical representation of the creature
 - Example: The colour of the eye (Brown, Blue)
- How do we wish to represent individuals genetically?

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)
- Phenotype: Physical representation of the creature
 - Example: The colour of the eye (Brown, Blue)
- How do we wish to represent individuals genetically?
- Encode the individuals in "Direct" or "Indirect" categories

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)
- Phenotype: Physical representation of the creature
 - Example: The colour of the eye (Brown, Blue)
- How do we wish to represent individuals genetically?
- Encode the individuals in "Direct" or "Indirect" categories
- Direct encoding: Explicitly specify everything

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)
- Phenotype: Physical representation of the creature
 - Example: The colour of the eye (Brown, Blue)
- How do we wish to represent individuals genetically?
- Encode the individuals in "Direct" or "Indirect" categories
- Direct encoding: Explicitly specify everything
 - Ex: For a NN, each gene is linked to some node etc.

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)
- Phenotype: Physical representation of the creature
 - Example: The colour of the eye (Brown, Blue)
- How do we wish to represent individuals genetically?
- Encode the individuals in "Direct" or "Indirect" categories
- Direct encoding: Explicitly specify everything
 - Ex: For a NN, each gene is linked to some node etc.
 - Direct connection in between genotype and phenotype

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)
- Phenotype: Physical representation of the creature
 - Example: The colour of the eye (Brown, Blue)
- How do we wish to represent individuals genetically?
- Encode the individuals in "Direct" or "Indirect" categories
- Direct encoding: Explicitly specify everything
 - Ex: For a NN, each gene is linked to some node etc.
 - Direct connection in between genotype and phenotype
- Indirect encoding: Rules or parameters to create individuals

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)
- Phenotype: Physical representation of the creature
 - Example: The colour of the eye (Brown, Blue)
- How do we wish to represent individuals genetically?
- Encode the individuals in "Direct" or "Indirect" categories
- Direct encoding: Explicitly specify everything
 - Ex: For a NN, each gene is linked to some node etc.
 - Direct connection in between genotype and phenotype
- Indirect encoding: Rules or parameters to create individuals
 - Encoding are much more compact

- Genotype: Genetic representation of the creature
 - Example: The genetic chart of an individual (Bb, BB, bb)
- Phenotype: Physical representation of the creature
 - Example: The colour of the eye (Brown, Blue)
- How do we wish to represent individuals genetically?
- Encode the individuals in "Direct" or "Indirect" categories
- Direct encoding: Explicitly specify everything
 - Ex: For a NN, each gene is linked to some node etc.
 - Direct connection in between genotype and phenotype
- Indirect encoding: Rules or parameters to create individuals
 - Encoding are much more compact
 - Can result in a heavy bias within the search space

ENCODING (CONT.)

• NEAT chooses Direct Encoding

ENCODING (CONT.)

- NEAT chooses Direct Encoding
- Two lists of genes: Series of nodes and Series of connections

ENCODING (CONT.)

- NEAT chooses Direct Encoding
- Two lists of genes: Series of nodes and Series of connections

Geno	ome (C	Gen	oty	ype)						
Node Genes	Node 1 Node Sensor Sens		e 2 sor	Node 3 Sensor	3 Node 4 Node or Output Hide		e 5 den			
Connect. Genes	In 1 Out 4 Weight 0.7 Enabled Innov 1		In 2 Out 4 Weight-0.5 DISABLED Innov 2		In 3 Out 4 Weight 0.5 Enabled Innov 3		In 2 Out 5 Weight 0.2 Enabled Innov 4	In 5 Out 4 Weight 0.4 Enabled Innov 5	In 1 Out 5 Weight 0.6 Enabled Innov 6	In 4 Out 5 Weight 0.6 Enabled Innov 11

• Can either mutate existing connections

- Can either mutate existing connections
 - Change the gene's weight

- Can either mutate existing connections
 - Change the gene's weight
 - Enable/Disable the gene

- Can either mutate existing connections
 - Change the gene's weight
 - Enable/Disable the gene
- Or can add new structure to the network

- Can either mutate existing connections
 - Change the gene's weight
 - Enable/Disable the gene
- Or can add new structure to the network
- A new connection is always randomly assigned a weight

- Can either mutate existing connections
 - Change the gene's weight
 - Enable/Disable the gene
- Or can add new structure to the network
- A new connection is always randomly assigned a weight
- A new node is always placed between two connected nodes

- Can either mutate existing connections
 - Change the gene's weight
 - Enable/Disable the gene
- Or can add new structure to the network
- A new connection is always randomly assigned a weight
- A new node is always placed between two connected nodes
 - The previous connection is disabled (still in genome)

- Can either mutate existing connections
 - Change the gene's weight
 - Enable/Disable the gene
- Or can add new structure to the network
- A new connection is always randomly assigned a weight
- A new node is always placed between two connected nodes
 - The previous connection is disabled (still in genome)
 - Previous start is node linked to the new node

- Can either mutate existing connections
 - Change the gene's weight
 - Enable/Disable the gene
- Or can add new structure to the network
- A new connection is always randomly assigned a weight
- A new node is always placed between two connected nodes
 - The previous connection is disabled (still in genome)
 - Previous start node is linked to the new node
 - Weight is set to be that of the old connection

- Can either mutate existing connections
 - Change the gene's weight
 - Enable/Disable the gene
- Or can add new structure to the network
- A new connection is always randomly assigned a weight
- A new node is always placed between two connected nodes
 - The previous connection is disabled (still in genome)
 - Previous start is node linked to the new node
 - Weight is set to be that of the old connection
 - New node is linked to the previous end node

- Can either mutate existing connections
 - Change the gene's weight
 - Enable/Disable the gene
- Or can add new structure to the network
- A new connection is always randomly assigned a weight
- A new node is always placed between two connected nodes
 - The previous connection is disabled (still in genome)
 - Previous start is node linked to the new node
 - Weight is set to be that of the old connection
 - New node is linked to the previous end node
 - Weight is set to 1

- Can either mutate existing connections
 - Change the gene's weight
 - Enable/Disable the gene
- Or can add new structure to the network
- A new connection is always randomly assigned a weight
- A new node is always placed between two connected nodes
 - The previous connection is disabled (still in genome)
 - Previous start is node linked to the new node
 - Weight is set to be that of the old connection
 - New node is linked to the previous end node
 - Weight is set to 1
 - Helps mitigate issues with new structural additions

MUTATION (CONT.)

BIOLOGY: CROSSOVER

 Blindly crossing over the genomes of two NNs could result in horribly mutated and non-functional NNs

BIOLOGY: CROSSOVER

 Blindly crossing over the genomes of two NNs could result in horribly mutated and non-functional NNs

• Genomes can be of different sizes (hence, incompatible)

- Genomes can be of different sizes (hence, incompatible)
- Biology takes care of it through the idea of Homology

- Genomes can be of different sizes (hence, incompatible)
- Biology takes care of it through the idea of Homology
- Homology: Alignment of chromosomes based on matching genes for a specific trait

- Genomes can be of different sizes (hence, incompatible)
- Biology takes care of it through the idea of Homology
- Homology: Alignment of chromosomes based on matching genes for a specific trait
- NEAT implements homology through the usage of historical markings

- Genomes can be of different sizes (hence, incompatible)
- Biology takes care of it through the idea of Homology
- Homology: Alignment of chromosomes based on matching genes for a specific trait
- NEAT implements homology through the usage of historical markings
 - Marks new evolutions with a historical number during crossovers

- Genomes can be of different sizes (hence, incompatible)
- Biology takes care of it through the idea of Homology
- Homology: Alignment of chromosomes based on matching genes for a specific trait
- NEAT implements homology through the usage of historical markings
 - Marks new evolutions with a historical number during crossovers
 - Each gene can be aligned and potentially crossed-over

- Genomes can be of different sizes (hence, incompatible)
- Biology takes care of it through the idea of Homology
- Homology: Alignment of chromosomes based on matching genes for a specific trait
- NEAT implements homology through the usage of historical markings
 - Marks new evolutions with a historical number during crossovers
 - Each gene can be aligned and potentially crossed-over
 - Each time a new node/connection occurs -> historical marking assigned

 \bullet

• NEAT suggests that most new evolutions are not good ones

- NEAT suggests that most new evolutions are not good ones
- Adding node/connection before optimization of weights leads to lower performing individuals

- NEAT suggests that most new evolutions are not good ones
- Adding node/connection before optimization of weights leads to lower performing individuals
- This puts new structures at a disadvantage

- NEAT suggests that most new evolutions are not good ones
- Adding node/connection before optimization of weights leads to lower performing individuals
- This puts new structures at a disadvantage
- Need to protect new structures and allow them to optimize

- NEAT suggests that most new evolutions are not good ones
- Adding node/connection before optimization of weights leads to lower performing individuals
- This puts new structures at a disadvantage
- Need to protect new structures and allow them to optimize
- How? => SPECIATION!

- NEAT suggests that most new evolutions are not good ones
- Adding node/connection before optimization of weights leads to lower performing individuals
- This puts new structures at a disadvantage
- Need to protect new structures and allow them to optimize
- How? => SPECIATION!
- Split the population into species based on similarity of topology and connections

- NEAT suggests that most new evolutions are not good ones
- Adding node/connection before optimization of weights leads to lower performing individuals
- This puts new structures at a disadvantage
- Need to protect new structures and allow them to optimize
- How? => SPECIATION!
- Split the population into species based on similarity of topology and connections
- Intra-species competition between the individuals

- NEAT suggests that most new evolutions are not good ones
- Adding node/connection before optimization of weights leads to lower performing individuals
- This puts new structures at a disadvantage
- Need to protect new structures and allow them to optimize
- How? => SPECIATION!
- Split the population into species based on similarity of topology and connections
- Intra-species competition between the individuals
- Allows creation, exploration & optimization of new structures

- NEAT suggests that most new evolutions are not good ones
- Adding node/connection before optimization of weights leads to lower performing individuals
- This puts new structures at a disadvantage
- Need to protect new structures and allow them to optimize
- How? => SPECIATION!
- Split the population into species based on similarity of topology and connections
- Intra-species competition between the individuals
- Allows creation, exploration & optimization of new structures
- Explicit Fitness Sharing: Individuals share how well they are doing across species

• Goal:

- Goal:
 - Did not want to first find good networks and then prune

- Goal:
 - Did not want to first find good networks and then prune
 - Start with minimal amount of nodes and connections

- Goal:
 - Did not want to first find good networks and then prune
 - Start with minimal amount of nodes and connections
 - Evolve complexity iff it is found necessary

- Goal:
 - Did not want to first find good networks and then prune
 - Start with minimal amount of nodes and connections
 - Evolve complexity iff it is found necessary
 - Algorithm starts with all networks having no hidden nodes

- Goal:
 - Did not want to first find good networks and then prune
 - Start with minimal amount of nodes and connections
 - Evolve complexity iff it is found necessary
 - Algorithm starts with all networks having no hidden nodes
 - Each individual is mapping of input nodes to output node

- Goal:
 - Did not want to first find good networks and then prune
 - Start with minimal amount of nodes and connections
 - Evolve complexity iff it is found necessary
 - Algorithm starts with all networks having no hidden nodes
 - Each individual is mapping of input nodes to output node
- Success:

- Goal:
 - Did not want to first find good networks and then prune
 - Start with minimal amount of nodes and connections
 - Evolve complexity iff it is found necessary
 - Algorithm starts with all networks having no hidden nodes
 - Each individual is mapping of input nodes to output node
- Success:
 - Evolved the XOR function

- Goal:
 - Did not want to first find good networks and then prune
 - Start with minimal amount of nodes and connections
 - Evolve complexity iff it is found necessary
 - Algorithm starts with all networks having no hidden nodes
 - Each individual is mapping of input nodes to output node
- Success:
 - Evolved the XOR function
 - Pole balancing task

- Goal:
 - Did not want to first find good networks and then prune
 - Start with minimal amount of nodes and connections
 - Evolve complexity iff it is found necessary
 - Algorithm starts with all networks having no hidden nodes
 - Each individual is mapping of input nodes to output node
- Success:
 - Evolved the XOR function
 - Pole balancing task
 - And popular games as well!

THANKS!

(REFERENCES: <u>HTTPS://TOWARDSDATASCIENCE.COM/NEAT-AN-AWESOME-APPROACH-TO-NEUROEVOLUTION-3ECA5CC7930F</u>) (THE SEMINAL PAPER: <u>HTTP://NN.CS.UTEXAS.EDU/DOWNLOADS/PAPERS/STANLEY.EC02.PDF</u>)