Lambda Networks:

Modeling long-range

Interactions without
Attention



Main Result:
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Notes:

e Paper is hard to understand.
e Based on Transformer Networks

e Other references:

o https://www.youtube.com/watch?v=3gxJ2WD8p4w

e C(Code:

o https://qithub.com/lucidrains/lambda-networks (pytorch)

o https://github.com/leaderj1001/LambdaNetworks (pytorch)

o https://paperswithcode.com/paper/lambdanetworks-modeling-long-range



https://www.youtube.com/watch?v=3qxJ2WD8p4w
https://github.com/lucidrains/lambda-networks
https://github.com/leaderj1001/LambdaNetworks
https://paperswithcode.com/paper/lambdanetworks-modeling-long-range

BackGround - Regular Attention

- When processing large data, =
some parts of the input are more
important than others. (This is
attention)

- Attention is basically a weighted
average.

- Given two sequences, X (input) &
C (what to attend to) what should
be the next layer output at each
input.




BackGround - Regular Attention







Advantages compared with RNN Approach:
1. Not Sequential on input, can be parallelized for much faster processing on GPUs.

2. Can directly refer to previous inputs using attention, not only the compact representation of all previous
inputs in the hidden state. - much better at picking up long range dependencies.

3. More details: Ali Ghodsi lection on self attention: https://www.youtube.com/watch?v=\WFcH7kRNEBc



https://www.youtube.com/watch?v=WFcH7kRNEBc

Problems with Attention in Visual Tasks

e Global Attention (n=m):

For Image size = 200x200,

n = 40,000

Attention map [nxm] = Huge memory

(aka quadratic memory footprint of attention)

O O O O

e Local Attention (m << n):

Much smaller attention maps

Context changes for each pixel.

Huge computational cost.

No Efficient way of doing this currently. (Many proposals active)

O O O O



Position Embeddings

e Transformers do not have inherent awareness of
position/order.

e Order of words is important.

e Transformers Networks (main user of attention) add
a positional embedding to each input word to give
the model knowledge of position

e multi-dimensional vector for each word in the
sequence. (same dimension as word embeddings)
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with dpoder = 312 (thus i € [0, 255]) in the original paper.

e [IMP: Positional Embeddings are fixed.

Good Reference:

https://kazemnejad.com/blog/transformer_architecture _positional_encoding/
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Higher Order Matrix Multiplication (Tensor Contraction)

Ref: https://math.stackexchange.com/questions/63074/is-there-a-3-dimensional-matrix-by-matrix-product
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Figure 1: Comparison between attention and lambda layers. (Left) An example of 3 queries and
their local contexts within a global context. (Middle) The attention operation associates each query
with an attention distribution over its context. (Right) The lambda layer transforms each context
into a linear function lambda that is applied to the corresponding query.
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Results - Imagenet Classification Accuracy

Table 3: Comparison of the lambda layer and attention mechanisms on ImageNet classifica-
tion with a ResNet50 architecture. The lambda layer strongly outperforms alternatives at a fraction
of the parameter cost. We include the reported improvements compared to the ResNet50 baseline in
subscript to account for training setups that are not directly comparable. T: Our implementation.

Layer Params (M) top-1

Conv (He et al}, 2016)' 25.6 76.940.0
Conv + channel attention QHu et al.}, 1201 8b)Jr 28.1 77.640.7
Conv + double attention (Chen et al., 2018) 33.0 77.0

Conv + efficient attention (Shen et al., 2018) - T7.341.2
Conv + relative self-attention (Bello et al\ 2019) 25.8 77.7+1.3
Local relative self-attention (Ramachandran et al., 2019)  18.0 7744105
Local relative self-attention (Hu et al.j, §20l9:) 23.3 T30
Local relative self-attention (Zhao et al., 2020) 20.5 78.211.3
Lambda layer 15.0 7841 5

Lambda layer (|u|=4) 16.0 78.92.0




Imagenet Classification - Memory and Compute

Table 4: The lambda layer reaches higher accuracies while being faster and more memory-
efficient than self-attention alternatives. Inference throughput is measured on 8 TPUv3 cores for
a ResNet50 architecture with input resolution 224x224.

Layer Complexity Memory (GB) Throughput top-1
Global self-attention O(blhn?) 120 OOM OOM
Axial self-attention O(blhny/n) 4.8 960ex/s 713
Local self-attention (7x7) ©(blhnm) - 440ex/s 77.4
Lambda layer O(lkn?) 0.96 1160ex/s  78.4
Lambda layer (shared embeddings) O (kn?) 0.31 1210ex/s 78.0
Lambda layer (|k|=8) O(lkn?) 0.48 1640ex/s 77.9

Lambda convolution (7x7) O(lknm) - 1100ex/s 78.1




MS COCO Object Detection

Table 7: COCO object detection and instance segmentation with Mask-RCNN architecture on
1024x1024 inputs. Mean Average Precision (AP) is reported at three IoU thresholds and for small,
medium, large objects (s/m/1).

Backbone ART.. APg(;vn/l Apmask APZ}?:I;Z
ResNet-101 48.2 29.9/509/64.9 42.6 24.2 /145.6 /1 60.0
ResNet-101 + SE 48.5 209/51.5/65.3 42.8 24.0/46.0/60.2
LambdaResNet-101 494 31.7/52.2/65.6 43.5 25.9/46.5/60.8
ResNet-152 48.9 299/51.8/66.0 43.2 24.2.146.1161.2
ResNet-152 + SE 49.4 30.0/52.3/66.7 43.5 24.6/46.8/61.8
LambdaResNet-152 50.0 31.8/53.4/67.0 43.9 25.5/47.3/62.0




Position vs Context Interactions

Table 8: Contributions of content and positional interactions. As expected, positional interactions
are crucial to perform well on the image classification task.

Content Position Params (M) FLOPS (B) top-1

v X 14.9 5.0 68.8
X v 14.9 11.9 78.1
v v 14.9 12.0 78.4




Lambda Resnets (Replace Conv blocks with
Lambda blocks)

Table 12: Inference throughput and top-1 accuracy as a function of lambda (L) vs convolution (C)
layers’ placement in a ResNet50 architecture on 224x224 inputs.

Architecture Params (M) Throughput top-1

Co-C—->C-=>C 25.6 7240ex/s 76.9
Lo-C—-C—C 255 1880ex/s 77.3
L—-L—-C—>C 25.0 1280ex/s 77.2
L—-L—-L—C 21.7 1160ex/s 77.8
L—-L—-L—=L 15.0 1160ex/s 78.4
C-oL—->L—->L 15.1 2200ex/s 78.3
C—-—C—-L—L 15.4 4980ex/s 783

C—-—C—C—L 18.8 7160ex/s TL3







