Lambda Networks: Modeling long-range Interactions without Attention

Main Result:

- Outperforms ResNets and EfficientNets on Top 1 accuracy on ImageNet.
- 2. 4.5x faster to train than EfficientNets.
- 3. Low memory requirements compared to Transformers.

Notes:

- Paper is hard to understand.
- Based on Transformer Networks
- Other references:
 - o <u>https://www.youtube.com/watch?v=3qxJ2WD8p4w</u>
- Code:
 - <u>https://github.com/lucidrains/lambda-networks</u> (pytorch)
 - <u>https://github.com/leaderj1001/LambdaNetworks</u> (pytorch)
 - <u>https://paperswithcode.com/paper/lambdanetworks-modeling-long-range</u>

BackGround - Regular Attention

- When processing large data, some parts of the input are more important than others. (This is attention)
- Attention is basically a weighted average.
- Given two sequences, X (input) & C (what to attend to) what should be the next layer output at each input.

BackGround - Regular Attention

Regular Attention n= inpot length For image 200x 200 = 40,000 O Grek Quertes, Keys and Values. d= * of inpot channels. Xrixd Wakk K= internal dimensionality of nxK attention layer (dimension of keys) Inpot quertes m = context length . (similar WKdxK Kmxk to Input) mxd Y = * of ootpot channels Wydxy Keys Context (what to attend * context can be anything - + if 1 mxv some as inpote self attention >> Global Atbention n=m Value 9. » Local Attention mikin.

Advantages compared with RNN Approach:

- 1. Not Sequential on input, can be parallelized for much faster processing on GPUs.
- 2. Can directly refer to previous inputs using attention, not only the compact representation of all previous inputs in the hidden state. much better at picking up long range dependencies.
- 3. More details: Ali Ghodsi lection on self attention: <u>https://www.youtube.com/watch?v=WFcH7kRNEBc</u>

Problems with Attention in Visual Tasks

- Global Attention (n=m):
 - For Image size = 200x200,
 - o n = 40,000
 - Attention map [nxm] = Huge memory
 - (aka quadratic memory footprint of attention)

• Local Attention (m << n):

- Much smaller attention maps
- Context changes for each pixel.
- Huge computational cost.
- No Efficient way of doing this currently. (Many proposals active)

Position Embeddings

- Transformers do not have inherent awareness of position/order.
- Order of words is important.
- Transformers Networks (main user of attention) add a positional embedding to each input word to give the model knowledge of position
- multi-dimensional vector for each word in the sequence. (same dimension as word embeddings)

$$PE(pos, 2i) = sin\left(\frac{pos}{10000^{2i/d_{model}}}\right),$$
$$PE(pos, 2i + 1) = cos\left(\frac{pos}{10000^{2i/d_{model}}}\right).$$

with $d_{model} = 512$ (thus $i \in [0, 255]$) in the original paper.

• IMP: Positional Embeddings are fixed.

Good Reference:

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Higher Order Matrix Multiplication (Tensor Contraction)

Ref: https://math.stackexchange.com/questions/63074/is-there-a-3-dimensional-matrix-by-matrix-product

Lambda Networks

LAMISPA NERDORKS	
O Get Keys, Queries and Values	is same as regoter attaction
X - Wath B Phikk	
C Wk dxk K mxk	
A V MXV	

B Get Context Interactions 2 > This is like the attention map $\lambda^{c} = \tilde{K}^{T} \cdot V = \lambda^{c}$ > Context ba summary of the [Kxm][mxv] [Kxv] actual context. (a) Get the Output $Y = Q \cdot \lambda^{c} = Y^{c}$ [nxk][kxv] [nxv] Alvantager, > much smaller memory map 2 = [KXV] Haganay Regular Attention A = [n x m]
Forectally Important when batch dimensions added.

Figure 1: Comparison between attention and lambda layers. (Left) An example of 3 queries and their local contexts within a global context. (Middle) The attention operation associates each query with an attention distribution over its context. (Right) The lambda layer transforms each context into a linear function lambda that is applied to the corresponding query.

Positional Embedding
> Each position n is related to m neighbor positions by a k vector
> E = [n xm x K]
> E = [n xm x K]
> But, this is the same + images (bath size does not affect this)
S Get the positional Interactions
$$2^{P}$$
 | contract bot the m dimension.
 $A^{P} = E \cdot V = A^{P}$
[nxmxk] [m xv] [n xkxv]

这 K

G Giet the Ootpot TP Q: What about the general $Y^{P} = Q \cdot \lambda^{P} = Y^{P}$ [mxk] [nxkxv] [nxv] contract over K Final Octpot $Y = Y^{c} + Y^{p}$ Alvantages - Not only position embadding, the relationship because of the position (has access to the context) · Does not grow w batch size

Results - Imagenet Classification Accuracy

Table 3: Comparison of the lambda layer and attention mechanisms on ImageNet classification with a ResNet50 architecture. The lambda layer strongly outperforms alternatives at a fraction of the parameter cost. We include the reported improvements compared to the ResNet50 baseline in subscript to account for training setups that are not directly comparable. [†]: Our implementation.

Layer	Params (M)	top-1
Conv (He et al., 2016) ^{\dagger}	25.6	$76.9_{\pm 0.0}$
Conv + channel attention (Hu et al., $2018b$) [†]	28.1	$77.6_{\pm 0.7}$
Conv + double attention (Chen et al., 2018) Conv + efficient attention (Shen et al., 2018) Conv + relative self-attention (Bello et al., 2019)	33.0 - 25.8	77.0 77. $3_{+1.2}$ 77. $7_{+1.3}$
Local relative self-attention (Ramachandran et al., 2019) Local relative self-attention (Hu et al., 2019) Local relative self-attention (Zhao et al., 2020)	18.0 23.3 20.5	$77.4_{\pm 0.5} \\ 77.3_{\pm 1.0} \\ 78.2_{\pm 1.3}$
Lambda layer Lambda layer ($ u $ =4)	15.0 16.0	78.4 _{+1.5} 78.9 _{+2.0}

Imagenet Classification - Memory and Compute

Table 4: The lambda layer reaches higher accuracies while being faster and more memoryefficient than self-attention alternatives. Inference throughput is measured on 8 TPUv3 cores for a ResNet50 architecture with input resolution 224x224.

Layer	Complexity	Memory (GB)	Throughput	top-1
Global self-attention	$\Theta(blhn^2)$	120	OOM	OOM
Axial self-attention	$\Theta(blhn\sqrt{n})$	4.8	960ex/s	77.5
Local self-attention (7x7)	$\Theta(blhnm)$	* _	440ex/s	77.4
Lambda layer	$\Theta(lkn^2)$	0.96	1160ex/s	78.4
Lambda layer (shared embeddings)	$\Theta(kn^2)$	0.31	1210ex/s	78.0
Lambda layer ($ k =8$)	$\Theta(lkn^2)$	0.48	1640ex/s	77.9
Lambda convolution (7x7)	$\Theta(lknm)$	8 	1100ex/s	78.1

MS COCO Object Detection

Table 7: COCO object detection and instance segmentation with Mask-RCNN architecture on 1024x1024 inputs. Mean Average Precision (AP) is reported at three IoU thresholds and for small, medium, large objects (s/m/l).

Backbone	$ AP_{coco}^{bb}$	$\mathrm{AP}^{bb}_{s/m/l}$	$ AP_{coco}^{mask}$	$\mathrm{AP}^{mask}_{s/m/l}$
ResNet-101	48.2	29.9 / 50.9 / 64.9	42.6	24.2 / 45.6 / 60.0
ResNet-101 + SE	48.5	29.9 / 51.5 / 65.3	42.8	24.0 / 46.0 / 60.2
LambdaResNet-101	49.4	31.7 / 52.2 / 65.6	43.5	25.9 / 46.5 / 60.8
ResNet-152	48.9	29.9 / 51.8 / 66.0	43.2	24.2 / 46.1 / 61.2
ResNet-152 + SE	49.4	30.0 / 52.3 / 66.7	43.5	24.6 / 46.8 / 61.8
LambdaResNet-152	50.0	31.8 / 53.4 / 67.0	43.9	25.5 / 47.3 / 62.0

Position vs Context Interactions

Table 8: Contributions of content and positional interactions. As expected, positional interactions are crucial to perform well on the image classification task.

Content	Position	Params (M)	FLOPS (B)	top-1
\checkmark	×	14.9	5.0	68.8
×	\checkmark	14.9	11.9	78.1
\checkmark	\checkmark	14.9	12.0	78.4

Lambda Resnets (Replace Conv blocks with Lambda blocks)

Table 12: Inference throughput and top-1 accuracy as a function of lambda (L) vs convolution (C) layers' placement in a ResNet50 architecture on 224x224 inputs.

Architecture	Params (M)	Throughput	top-1
$\mathbf{C} ightarrow \mathbf{C} ightarrow \mathbf{C} ightarrow \mathbf{C}$	25.6	7240ex/s	76.9
$L \to C \to C \to C$	25.5	1880ex/s	77.3
$L \to L \to C \to C$	25.0	1280ex/s	77.2
$L \to L \to L \to C$	21.7	1160ex/s	77.8
$L \to L \to L \to L$	15.0	1160ex/s	78.4
$\mathbf{C} \to \mathbf{L} \to \mathbf{L} \to \mathbf{L}$	15.1	2200ex/s	78.3
$C \to C \to L \to L$	15.4	4980ex/s	78.3
$\mathbf{C} \to \mathbf{C} \to \mathbf{C} \to \mathbf{L}$	18.8	7160ex/s	77.3